
Vol.:(0123456789)1 3

Zoomorphology (2022) 141:197–207 
https://doi.org/10.1007/s00435-022-00557-5

ORIGINAL PAPER

Growing a fin: wetland and upland effects on tadpole morphology 
of Scinax squalirostris (Anura: Hylidae)

Thaíse Boelter1 · Leonardo Felipe Bairos Moreira2 · Mateus Marques Pires3 · Cristina Stenert1 · 
Leonardo Maltchik3,4 

Received: 22 October 2021 / Revised: 22 March 2022 / Accepted: 5 April 2022 / Published online: 27 April 2022 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Geographical patterns of phenotypic variation are the outcome of a complex array of evolutionary and environmental 
factors. Studies on the correlates of the geographic variation in morphological characters can be useful to understand the 
drivers of phenotypic differences and because intraspecific variation in morphology can impact either local adaptation of 
any given species or higher-level ecosystem processes. The morphology of larval amphibians responds to multiple factors, 
including wetland level and surrounding land use. However, understanding the relative influence of such environmental 
factors on the morphology of tadpoles remains challenging. We used geometric morphometrics to describe the intraspecific 
morphological variation in tadpoles of Scinax squalirostris (Anura: Hylidae) in freshwater wetlands ranging along the tran-
sition between the Pampa and Atlantic Forest biomes in southern Brazil. Specifically, we assessed the relative influence of 
spatial and environmental (aquatic predators, water chemistry and hydroperiod, crop area) factors to tadpole body size and 
shape. The size of S. squalirostris tadpoles was affected by spatial factors and pH. Smaller-sized tadpoles were observed 
in the Pampa–Atlantic Forest transition. Allometry-free changes in the shape of tadpoles were associated both to wetland 
and upland factors. Tadpoles in larger ponds showed globular bodies and higher ventral fins, while tadpoles in ponds with 
higher electrical conductivity showed smaller tails. Tadpoles in ponds surrounded by larger crop areas showed longer fins. 
Our results are useful to understand the importance of wetland and upland effects on the morphology of widely distributed 
aquatic species, especially given the ongoing scenarios of land cover modification and climate change.

Keywords  Amphibian · Body shape · Body size · Geometric morphometrics · Phenotypic variation · Land use

Introduction

Widely distributed species usually show considerable phe-
notypic variation within their range. These spatial patterns 
of intraspecific variation reflect, in brief, the role of adaptive 
and evolutionary processes (Armbruster and Schwaegerle 
1996). In this context, environmental factors are usually 
considered as important drivers of the geographic variation 
in the morphology of organisms, because several species 
manifest different phenotypes at sites with different envi-
ronmental conditions (e.g., biotic and abiotic factors; Van 
Buskirk et al. 1997; Verberk et al. 2021; Verberk et al. 2021). 
Such correlations between environmental factors and phe-
notypic differences are indicative of the role of local adap-
tation by means of natural selection or phenotypic plastic-
ity (Travis 1994; Van Buskirk 2009; Perez and Monteiro 
2009), although distinguishing between those mechanisms 
is tricky without accounting for genetic data (Travis 1994; 
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Perez et al. 2009; de Abreu et al. 2018). Geographic patterns 
of phenotypic differences may be unrelated to environmen-
tal factors and arise as a result of neutral processes such as 
genetic drift (Lande 1976; Thorpe 1987; Armbruster and 
Schwaegerle 1996; Perez et al. 2009). Under the influence 
of cumulative, random genetic variation over time, one could 
expect higher morphological dissimilarity among more dis-
tant locations due to limited connectivity among spatially 
isolated sites and, in turn, greater morphological similar-
ity among neighboring populations due to higher gene flow 
among closer sites, characterizing a pattern of isolation by 
distance (Wright 1943; Barbujani 1987), were spatial fac-
tors (e.g., geographic distances among sites) would be cor-
related with phenotypic differences. However, identifying 
the evolutionary processes underlying the spatial variation 
in phenotype is challenging because they may show complex 
and interacting effects (Sun et al. 2013; Engen and Sæther 
2016; Lee et al. 2016).

The morphology of an organism affects several aspects of 
its life history (e.g., from growth pattern to reproductive suc-
cess) and is thus key to its fitness (Arnold 1983). Besides the 
adaptive consequences for any given species, intraspecific 
variation in the morphology of specimens can eventually 
affect other levels of biological organization (e.g., com-
munity structure and ecosystem functions) (Bolnick et al. 
2011). This holds especially important for species inhabit-
ing freshwater ecosystems such as wetlands. For instance, 
aquatic larval stages of amphibians (tadpoles) inhabiting 
wetlands are involved in important ecological processes in 
these ecosystems, such as nutrient cycling (Montaña et al. 
2019). Moreover, earlier studies showed that the ecologi-
cal roles of tadpoles are mediated by their morphological 
traits over their development (Schiesari et al. 2009; Ghioca-
Robrecht and Smith 2011; Schriever and Williams 2013), 
indicating that intraspecific variation in tadpole morphology 
can ultimately affect the ecological functioning of wetlands.

For example, many authors described morphologi-
cal responses of tadpoles following changes in hydroper-
iod duration as a mean to adapt to pond drying (Székely 
et al. 2010; Amburgey et al. 2012; Brannelly et al. 2019). 
Decreasing hydroperiod duration can induce shallower body 
shapes, reduced body sizes and better tadpole swimming 
performance (Johansson et al. 2010; Székely et al. 2010). 
Likewise, changes in developmental and behavioral traits to 
reduce the risk of predation were evidenced in response to 
predator presence (Skelly and Werner 1990; Wellborn et al. 
1996; Anholt et al. 2000; Nunes et al. 2014). Other induced 
phenotypic modifications in tadpoles may also be the result 
of inter- and counteracting factors linked to wetland habitat 
heterogeneity (e.g., area, water depth, vegetation structure, 
and water chemistry; Grözinger et al. 2014; Johnson et al. 
2015; Boelter et al. 2020; Eterovick et al. 2020a; Lopes 
et al. 2020). For instance, water chemistry factors (e.g., pH, 

nitrate, ammonium) of wetlands may affect tadpole devel-
opment and size at metamorphosis (Gerlanc and Kaufman 
2005; Grözinger et al. 2014). Among the water chemistry 
factors, pH stands out as one of the important factors affect-
ing tadpole development. Specifically, low pH values have 
been associated with decreased growth of tadpole stages 
from various species (Brodman et al. 2003). However, most 
findings on the effect of pH on tadpole morphology stem 
from laboratory settings (Freda 1986; Anderson and Johnson 
2012; Wijethunga et al. 2015), while research on the rela-
tionship between pH and tadpole morphology using field-
based data is limited and not well established. Most of those 
abiotic and biotic environmental factors that may influence 
tadpole morphology are often affected by the hydroperiod 
gradient of wetlands (Wellborn et al. 1996). However, faster 
larval development in response to environmental stressors 
reduces survival of tadpoles and post-metamorphic speci-
mens (Amburgey et al. 2016; Brannelly et al. 2019). Because 
larval growth, development and size at which tadpoles 
metamorphose are not necessarily correlated (Relyea 2007; 
Amburgey et al. 2012), morphological trade-offs across 
hydroperiods are not intuitive.

In addition, the ecological functioning of small wet-
lands is closely bound to their surrounding terrestrial habi-
tats, thus the expansion of urban and agro-industrial activi-
ties strongly interacts with the ecological conditions of 
most near-shore habitats (Paerl et al. 2014). In relation to 
freshwater wetlands, these include many relevant negative 
effects associated with water quality, altered hydrology 
and energy flow (Moreira and Maltchik 2015; Moorman 
et al. 2017; Ji et al. 2018). Natural land cover and human 
land uses could therefore likely affect habitat suitability to 
amphibian species and eventually affect tadpole morphol-
ogy, depending on adult reproductive mode and tadpole 
plasticity (Becker et al. 2010; Moreira et al. 2020). For 
instance, land use has been associated with variation in 
morphological traits of tadpoles, with tadpoles in wetlands 
surrounded by less-intensive land use showing larger bod-
ies and larger tails (Costa and Nomura 2016; Marques 
et al. 2019). In coastal areas of southern Brazil, subtropi-
cal grasslands are gradually replaced by moist broadleaf 
forests (Projeto MapBiomas 2020). Along this grassland-
forest transition, the spatial arrangement of wetlands 
was associated with the distribution of tadpole species 
((Knauth et al. 2019), but spatially structured environmen-
tal factors, such as land use and wetland level (water chem-
istry, hydro-period and pond area), had also distinct influ-
ences on tadpole distribution in each biome (Knauth et al. 
2019; Moreira et al. 2020). In this context, identifying 
the most important factors associated with the geographic 
patterns of phenotypic variation of tadpoles is particu-
larly challenging. Whether land use and wetland char-
acteristics have similar effects on tadpole development, 
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along their distribution, is subject to discussion. Given 
the above, studying the morphological variation within 
the range of a given species and teasing apart the rela-
tive importance of spatial and environmental factors can 
contribute to understanding of how the local environment 
induce phenotypic changes over a species’ development 
as well as the potential impacts of landscape modifica-
tions (Diaz et al. 1998; McGill et al. 2006). In particular, 
this is important in Neotropical freshwater habitats, which 
are under increasing pressure by land use change (Mello 
et al. 2020). Specially, wetland environments are subject 
to substantial urban and agricultural expansion (Silva and 
Tagliani 2012). However, most studies on the drivers of 
morphology of Neotropical tadpoles focus cross-species 
assessments (Marques and Nomura 2015; Costa et  al. 
2017; Marques et al. 2019), while intraspecific-level stud-
ies focusing widely distributed anurans are rare or spatially 
restricted (Quinzio and Goldberg 2021).

In this study, we assessed the geographical patterns of 
intraspecific variation in tadpole morphology of Scinax 
squalirostris (Anura: Hylidae) in wetlands ranging along 
the transition between the Pampa and Atlantic Forest 
biomes in southern Brazil. Specifically, we investigated 
whether tadpole body size and shape change with spatial 
and environmental factors. We further investigated the rel-
ative influence of wetland level (i.e., water-level variables; 
e.g., predators, water chemistry, wetland area and hydrop-
eriod) and upland factors (i.e., surrounding land use; e.g., 
crop area) on tadpole morphology when controlling for 
spatial factors. For the present work, we considered that 
(i) tadpole morphology strongly responds to local biotic 
and abiotic factors (Van Buskirk et al. 1997; Van Buskirk 
2009; Marques and Nomura 2015; Marques et al. 2019; 
Boelter et al. 2020); and (ii) that the geographical distribu-
tion of wetlands and spatially structured local environmen-
tal variables were found to be the main drivers of tadpole 
distribution in the study area (Knauth et al. 2019; Moreira 
et al. 2020). Specifically, we tested: (i) whether amphibian 
populations track the wetland geographical distribution in 
the study area, i.e., whether phenotype variation of tad-
pole populations are morphologically more similar among 
closer wetlands and coarsely follow an isolation-by-dis-
tance pattern (Wright 1943) or (ii) whether they are more 
strongly structured by local adaptation processes result-
ing from the high environmental heterogeneity of the wet-
lands. In relation to the effect of wetland- and upland-level 
factors on tadpole morphology, additionally, we expected 
that tadpoles inhabiting smaller and more acidic ponds 
would have smaller body sizes, narrower fins and shorter 
tails, because increased pH is commonly associated with 
faster development and metamorphosis in tadpoles (Ger-
lanc and Kaufman 2005). In addition, tadpoles inhabiting 
ponds surrounded by smaller crop areas would have larger 

body sizes than larger crop areas (Costa and Nomura 2016; 
Marques et al. 2019).

Materials and methods

Study area and target species

The study area is located in the southern Brazilian Coastal 
Plain (states of Santa Catarina and Rio Grande do Sul; 
Fig. S1), which encompasses various wetland types, such 
as marshes, coastal lagoons, inland lagoons and estuar-
ies. This region is characterized by a mosaic of grasslands, 
shrubby vegetation (Restinga) and moist forests (Marques 
et al. 2015). Scinax squalirostris is a small-sized tree frog 
(<3 cm) with a broad geographic distribution, occurring 
across south and south-eastern Brazil, Uruguay, Argentina, 
and Paraguay (Maneyro and Carreira 2012; Haddad et al. 
2013). Its nektonic tadpoles inhabit small permanent and 
temporary wetlands, and larval development takes about 
two months (Maneyro and Carreira 2012; Eterovick et al. 
2020b), tadpoles are semi-transparent, their tails have dark 
spots, their food is based on suspended matter deposited on 
the bottom of lakes and small ponds.

Sampling design and data collection

The area of the sampled wetlands ranged from 0.14 to 0.8 ha. 
The ponds were ~10 km apart from each other, and they were 
selected on the basis of accessibility (i.e., private landowners 
willing to participate in the study). In the spring of 2015, we 
sampled tadpoles twice (September and November) in 19 
freshwater wetlands across the transition zone between the 
Pampa and Atlantic Forest biomes (Figs. S1, S2). Samples 
were taken by dip-netting (30 cm wide, 250 μm mesh size) 
and sampling effort was 12 sweeps (~1 m2) per sampling 
wetland, haphazardly distributed across the representative 
microhabitats in the wetlands (from the margin up to 4 m). 
Tadpoles were anesthetized with clove oil solution and pre-
served in the field.

We also assessed the abundance of potential predators 
of tadpoles in each wetland (Table S2). Taking into account 
previous studies that recorded tadpoles as their prey items 
(Kopp and Eterovick 2006; Gambale et  al. 2014), we 
recorded the abundance of families from the following 
aquatic insect orders: dragonfly (Odonata), giant water 
bugs (Hemiptera) and adult beetles (Coleoptera). Aquatic 
insects were sampled using a 30 cm wide entomological net 
(frame dip-net) with 250-μm diameter mesh. Each sample 
was represented by a 1-m sweep. We also recorded the pres-
ence of fishes in the studied wetlands (Knauth et al. 2019; 
Bacca et al. 2021). In specific, small individuals (±3 cm) of 
five fish families were observed in the ponds: Poeciliidae 
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(Phalloceros caudimaculatus), Callichthydae (Corydo-
ras paleatus), Characidae (Astyanax cf. eigenmanniorum, 
Hyphessobrycon boulengeri, Hyphessobrycon aff. igneus, 
Mimagoniates inequalis, Cheirodon interruptus), Erythrini-
dae (Hoplias aff. malabaricus) and Curimatidae (Cyphocha-
rax voga) (Lanés L., personal communication).

In each wetland, we used five environmental variables 
to characterize local habitat structure: area, pH, electrical 
conductivity, water turbidity, and hydroperiod. We measured 
wetland area in situ with a global positioning system device. 
Water chemistry variables were assessed with a water quality 
meter (HORIBA U-22). Hydroperiod was assessed based on 
the monitoring of water availability in each wetland during 
the sampling period (i.e., between the two sampling events). 
Wetlands were assigned into two categories: 'long-' or 'short-
hydroperiod'. 'Short-hydroperiod' wetlands were those that 
had either a reduction up to 80% of their surface flooding 
area or dried up completely between the sampling events, 
while 'long-hydroperiod' wetlands were those that retained 
no less than 80% of their original surface flooding area in 
comparison with the first sampling event.

We defined circular buffers (1000-m radius) and meas-
ured agricultural land-cover data (Table S1) using Qgis 
(ver. 2.18.16, https://​qgis.​org/​en/​site/, accessed 10 Decem-
ber 2020). We performed analysis on Google Earth imagery 
using a land-cover classification for 2015 produced within 
the scope of the Mapbiomas initiative (Projeto MapBiomas 
2020). We focused only area extension agricultural land use 
because amphibians with aquatic reproductive modes (such 
as S. squalirostris) seem particularly sensible to such habitat 
modification in the study area (Moreira et al. 2020).

Geometric morphometric analysis

Only specimens between Gosner’ stages 31 and 37 were 
used for morphometric analyses to ensure comparable 
sizes across sites (Fig. S3). Specimens with damaged tails 
were excluded. Analyses of shape and size were derived 
from 71 tadpole specimens of Scinax squalirostris: 32 in 

the Pampa (number of individuals per wetland ranging 
from two to six), and 39 in the Atlantic Forest (number of 
individuals per wetland ranging from one to 11).

We took digital images of lateral view for each speci-
men using a digital camera (Canon Rebel T5i; 150 mm 
lens) mounted to a copy stand. A set of 13 landmarks was 
digitized from each image in according to Van Buskirk 
(2009) with some minor modifications: (Fig. 1): (1) most 
anterior point of the body; (2) nostril; (3) the center of the 
eye; (4) most lateral point of the eye; (5) dorsal fin origin; 
(6) tip of the tail; (7) most anterior point of the proctodeal 
tube–ventral fin junction; (8) maximum ventral curvature 
of the body; (10) most anterior point of the oral disk–body 
junction; (11) most dorsal point of the caudal muscula-
ture–body junction; (12) most anterior point of the axis 
of the tail myotomes (13) most ventral point of the caudal 
musculature–body junction. Ten semilandmarks were set 
to capture shape and were positioned between landmarks. 
Three semilandmarks are positioned between points 5 and 
6, 7 and 6 and two semilandmarks between points 11 and 
6, 13 and 6.

The configuration of landmarks and semi-landmarks 
was then digitized using tpsDig2 software, version 2.16 
(Rohlf 2010). After digitization, we applied a Generalized 
Procrustes Analysis (GPA) in the matrices of coordinates 
to standardize the size and align the configuration of land-
mark coordinates. Such approach enabled us to separate 
differences among landmarks configuration in two compo-
nents—size (as centroid size) and shape (as GPA residu-
als) (Rohlf and Slice 1990; Cordeiro-Estrela et al. 2006). 
We ran a multivariate regression analysis using the geo-
morph package (Adams et al. 2019) to test for the presence 
of allometry in the sample. Because the relationship was 
significant (P = 0.001), with size predicting about 12% of 
shape variation, we used the residuals of the regression 
of shape on size instead of original data. The resulting 
allometry-corrected data were then subjected to a principal 
component analysis (PCA) and PCA scores were used in 
all further analysis.

Fig. 1   Position of the 13 landmarks (red circle) and 10 semilandmarks (yellow circle) in a lateral view of the Scinax squalirostris tadpole

https://qgis.org/en/site/
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Data analysis

To account spatial autocorrelation in size, we estimated 
Moran’s correlogram based on five distance classes. As posi-
tive autocorrelation was detected, we used a distance-based 
Moran’s eigenvector map (dbMEM) analysis (Dray et al. 
2006). We retained one MEM modeling broad spatial scales 
that correspond to the spatial filter used in the subsequent 
analysis to eliminate spatial autocorrelation. We assessed 
the relationship between tadpole size and environmental 
variables using linear models (including spatial filter in all 
models) with forward selection based on AICc model selec-
tion criteria. Linear models and spatial analyses were run in 
R 4.1.1 (R Core Team 2020) using the adespatial package 
(Dray et al. 2020).

Relationship between tadpole shape and environment was 
tested using a partial redundancy analysis (RDA) controlling 
for spatial structure (here represented by MEM variable as 
previously described). Before modeling, we analyzed the 
multicollinearity structure among predictors using the vari-
ance inflation factor (VIF). However, all VIF values were <5 
and our final analyses were performed with the seven pre-
dictors. As our global model with all predictors was sig-
nificant (P = 0.001), we proceeded with a forward selection 
of variables on the basis of adjusted R2 and significance of 
each explanatory variable (Blanchet et al. 2008). We cre-
ated graphical representations of shape change (relative to 
average shape) based on partial least squares analysis-PLS 
(Fruciano et al. 2011). Predicted shapes were obtained with 
two-block PLS using shape variables as first block, and as 
second block of variables, the same environmental variables 
present in the final RDA (scaled to unit variance). We also 
ran separate PLS for each environmental variable used in 
the RDA, using the geomorph and Morpho (Schlager 2017) 
packages in R.

Results

The best model explaining the size S. squalirostris tadpoles 
included spatial filters and pH (Table 1). Together, they 
explained 20% of the variation in tadpole size, with negative 

association for pH values and positive for spatial structure 
(MEM). Spatial filter (MEM) explained 13% of the variation 
in size, while the joint contribution between pH and MEM 
explained the remaining fraction. Small-size tadpoles were 
associated to small values of MEM, indicating that individu-
als from wetlands in the Pampa–Atlantic Forest boundary 
had smaller sizes (Fig. 2).

The forward selection procedure retained three variables 
in the final model and four variables were not included (pH, 
water turbidity, hydroperiod, and predators). After control-
ling for spatial correlation, there was a weak but significant 
(F3,66 = 2.789; P = 0.001) association between shape and 
environmental variables (Table S3). Wetland area, electrical 
conductivity, and crop area explained 10.9% of the variation 
in the shape (Table 2). Shape changes predicted (first PLS 
axis) by the association of shape and environmental vari-
ables are showed in Fig. 3A. Separate PLS of tadpole shape 
were significant for all three variables (Table S4). Individu-
als from small wetlands have body depressed and ventral fin 
low with margin parallel to the longitudinal tail axis, while 
individuals from large wetlands have body globular and ven-
tral fin high, with a convex margin (Fig. 3B). Tadpoles from 
wetlands with high electrical conductivity have body globu-
lar and small tail (Fig. 3C). Individual from ponds without 
surrounding crop area has shape similar to reference shape, 
while tadpoles from crop areas have larger fins (Fig. 3D).

Discussion

We assessed the geographic patterns and the ecological 
correlates of the intraspecific morphological variation of S. 
squalirostris tadpoles in coastal wetlands ranging along a 
grassland–forest transition in southern Brazil. Model selec-
tion procedures showed that broad-scale spatial factors along 
with wetland (water level) and upland environmental factors 
were jointly important to explain variation in both tadpole 
shape and size in the study area. Assuming that an associa-
tion between geographic patterns of phenotypic variation 
and spatial factors could be a signature of isolation-by-dis-
tance process, while phenotype–environment correlations, 
of adaptive processes (Wright 1943; Van Buskirk et al. 1997; 
Perez et al. 2009; de Abreu et al. 2018), we found basic sup-
port for the two main hypotheses being tested.

However, one major result is that the relationships 
between the traits and correlates assessed remarkably dif-
fered: while body size was better explained by broad-scale 
spatial filter (MEM), followed by the joint contribution of 
MEM and pH, shape was better predicted by wetland-level 
and upland environmental factors, seconded by MEM. Thus, 
a closer look at our findings suggests a complex interplay 
of the geographical distribution of the wetlands and local 
adaptation processes in shaping tadpole morphology in the 

Table 1   Effects of environmental factors on body size of tadpoles of 
Scinax squalirostris indicate a negative relationship

Model AICc ΔAICc Adj R2

MEM, – pH 2042.3 0 0.20
MEM, – pH, – predators 2044 1.9
MEM, –pH, – predators, area 2046.1 4.0
MEM, –pH, – predators, wetland 

area, crop area
2048.4 6.3
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region. Although there is evidence for complex and interact-
ing effects of spatial and environmental factors underlying 
phenotypic variation for other taxa (Sun et al. 2013; Engen 
and Sæther 2016; Lee et al. 2016; de Abreu et al. 2018), we 
unraveled patterns of intraspecific phenotypic variation and 
the roles of ecological correlates to a spatial extent usually 
not considered in studies focusing wetland amphibians in 
the Neotropical region (Goldberg et al. 2018; Marques et al. 
2019; Quinzio and Goldberg 2021).

Variation in tadpole body size was predominantly 
explained by the broad spatial filter (MEM1). Although 

it indicates that geographically closer wetlands harbored 
tadpole populations morphologically more similar in terms 
of body size (suggesting isolation by distance), the rela-
tionship between body size and wetland location was not 
linear across the study area. Specifically, tadpoles with 
smaller sizes were associated with wetlands located in 
the Pampa–Atlantic Forest boundary, while tadpoles with 
larger sizes were found at the northern and southernmost 
parts of the study area. The predominance of the broadest 
spatial filter agrees with previous studies stressing the role 
of broad-scale spatial factors on the distribution of aquatic 
taxa (e.g., amphibian and aquatic insects) in coastal wet-
lands ranging along the transition zone between Atlantic 
Forest and Pampa (Pires et al. 2018; Knauth et al. 2019; 
Bacca et al. 2021). In this context, the importance of the 
broad spatial filter for tadpole size is discussed considering 
the knowledge on amphibian biology, as well as the limi-
tation of our approach. As for the latter, we lack genetic 
data to investigate the potential role of genetic similarity 
(Barbujani 1987; Perez et al. 2009) or movement informa-
tion underlying the spatial structure (Sinsch 2014) among 
these morphologically alike subpopulations, we highlight 
that our proposed explanation is yet tentative.

Fig. 2   Distance-based Moran’s 
eigenvector map (MEM) 
describing broad-scale spatial 
autocorrelation of the Scinax 
squalirostris tadpole size. 
Increasing size of the symbols 
corresponds to increasing 
positive values, in black, and 
increasing negative values, in 
white, of the eigenvector. Wet-
lands with the same color show 
similarity in tadpole’s size and 
the size of the symbols indicates 
the level of similarity; small 
symbols stand for low similar-
ity, large symbols stand for high 
similarity

Table 2   Results of partial redundancy analysis (RDA) describing the 
relationship between environmental variables (controlling for spatial 
correlation) and shape of Scinax squalirostris tadpoles

Full model includes predators, wetland area, hydroperiod, water tur-
bidity, pH, electrical conductivity, and crop area

P (full model) Adj R2

(full model)
Variable P Adj R2

0.001 0.167 Wetland area 0.02 0.11
Conductivity
Crop area
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As for the former, variation in body size could be 
explained by a potential role of local climatic features under-
lying hydric regime of each wetland. In specific, along the 
extent of the study area, there is a strong variation in pre-
cipitation and temperature (Alvares et al. 2013). These vari-
ables can strongly drive local hydroperiod through flood and 
evaporation regimes (Jackson et al. 2014) and thus drive 
larval growth, ultimately affecting body size (Brannelly 
et al. 2019). A recent study assessing adults from a sister 
species (S. fuscovarius (A. Lutz, 1925)) detected changes 
in body sizes among drier and humid areas (Goldberg et al. 
2018). Another potential explanation for the importance of 

the broad spatial filter to tadpole size is likely associated 
with the role of biome type, since MEM1 summarized the 
transition between the Atlantic Forest and Pampa biomes. 
On this matter, the study of Knauth et al. (2019) showed that 
the relative importance of local environmental variables on 
tadpole distribution varied in each biome. In specific, water 
chemistry, hydroperiod and pond area were important struc-
ture amphibian distribution in the Atlantic Forest, whereas 
water chemistry features seem to be the sole factor in the 
Pampa. Specifically, it fits well with a potential effect of 
the turnover on the relative magnitude of abiotic and biotic 
interactions on tadpole phenotype in each biome.

Fig. 3   Shape changes predicted by partial least square analysis: A all 
environmental variables, B wetland area, C electrical conductivity, D 
crop area. Gray outline corresponds to the average form. Black out-

line corresponds to negative extreme (bottom) and positive extreme 
(top), respectively
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In addition, body size was influenced by joint fraction 
of pH and the broad spatial filter, suggesting the influence 
of local adaptive processes coupled with geography. The 
heterogeneous spatial distribution of amphibian phenotypes 
associated with the transition between the Pampa and Atlan-
tic Forest biomes and wetland and upland environmental 
factors resembles previous studies showing that patterns of 
phenotypic variation in anuran larvae is spatially-dependent 
(Michel 2011). As for water chemistry variables, there are 
several reports showing effects of pH on development, loco-
motion, and mortality of tadpoles (Barth and Wilson 2010; 
Thabah et al. 2018). The growth deceleration prior to meta-
morphosis and early emergence at a small size is widespread 
among amphibian families (Székely et al. 2017; Brannelly 
et al. 2019; Mogali et al. 2021).

Shape variation in S. squalirostris tadpoles appeared to be 
consistent with our expectations. Specifically, the variation 
in tadpole shape was related to wetland pH, area, conductiv-
ity and crop area at a 1000-m radius. Because size predicted 
about 12% of shape variation in our data, environmental 
factors affecting tadpole sizes may have consequences for 
general shape through allometric shape variation. However, 
it is important bear in mind that our results of shape changes 
were allometry-free. In general, tadpoles inhabiting small 
ponds had depressed bodies and lower ventral fins. We were 
unable to identify why shallower body shape seems to be 
an adaptive response to water-level conditions; however, 
such shape responses were been found for other species 
under scenarios of hydrological stress (Tejedo and Reques 
1994; Richter-Boix et al. 2006; Johansson et al. 2010). It is 
important to recognize that a depressed body jointly with 
elongated and finless tail: (i) has better swimming perfor-
mance; (ii) can be reabsorbed faster by tadpoles; (iii) may 
become obsolete in shallow-water conditions (Van Buskirk 
and Saxer 2001; Richter-Boix et al. 2006; Johansson et al. 
2010). As ponds become shallower/smaller, tadpole’s likely 
face more crowded conditions, which in turn would increase 
predation rates as well as intra- and interspecific competi-
tion. Such density-dependent changes linked to hydroperiod 
are major factors that induce variations in morphology in 
larval amphibians (Tejedo and Reques 1994; Rogers and 
Chalcraft 2008; Schalk 2016). In this study, predatory fish 
and invertebrate predators occurred in all ponds. We did not 
assess larval density and to predation we considered only 
the abundance of aquatic insects as potential predators, but 
one could expect that the regional species pool be filtered in 
different local assemblages.

In addition, tadpole shape is the result of multiple pro-
cesses occurring at different scales that can result in similar 
shape patterns or shift associated with antagonistic effects. 
Behavior and morphology are individual characteristics that 
can be affected by various anthropogenic factors in organ-
isms such as larval amphibians (Marques et al. 2019), e.g., 

land use. Here, tadpoles from ponds surrounded by smaller 
crop areas bore superficial resemblance to their reference 
values, while tadpoles present in ponds with larger crop 
areas showed larger fins, demonstrating that these organ-
isms, according to changes in land use around the ponds, 
have the ability to adjust their morphology. While agricul-
tural runoff has strong teratogenic and genotoxic effects on 
tadpoles (Mann et al. 2009; Silva et al. 2021), the water 
availability associated with land preparation and crop cycle 
can be particularly challenging for amphibians in agricul-
tural landscapes (Moreira and Maltchik 2014; Schiesari and 
Corrêa 2016). These stressors can influence behavioral and 
morphological changes in the individual traits of organisms. 
There is evidence that in ponds surrounded agricultural land 
use, the invasion of predators and competitors can be facili-
tated (Blann et al. 2009). Interestingly, a significant rela-
tionship between agricultural activities and morphological 
changes associated with eye position and fluctuating asym-
metry is previously reported for Neotropical tadpoles (Costa 
and Nomura 2016; Marques et al. 2019). Deep tail fins act 
as bait, preventing deadly blows to the body wall (Johnson 
et al. 2015). During larval development, exposure to preda-
tion risk induces the expression of defenses, some species 
of amphibians are able to recognize predator’s cues, whether 
visual, physical or chemical (Nunes et al. 2014).

Conclusion

The morphology of S. squalirostris tadpoles was influenced 
by a combination of spatial factors, wetland-level (biotic 
and abiotic factors) and land use environmental factors in 
subtropical coastal wetlands in southern Brazil. Our results 
suggest a complex interplay of geographical and local adap-
tative processes shaping tadpole phenotypes in the study 
area. Although we lack genetic data to further untangle 
the roles of selection and phenotypic plasticity in driving 
the observed patterns of intraspecific variation in tadpole 
morphology (Travis 1994; Armbruster and Schwaegerle 
1996; Perez and Monteiro 2009; de Abreu et al. 2018), our 
finding agrees with the general view that tadpole morphol-
ogy is highly responsive to environmental conditions (Van 
Buskirk et al. 1997; Van Buskirk 2009; Marques et al. 2019; 
Boelter et al. 2020). In this regard, future approaches that 
include genetic data might be particularly instructive to fur-
ther untangle the roles of connectivity among wetlands and 
phenotypic plasticity in driving the observed patterns of 
intraspecific variation in tadpole morphology. Additionally, 
sampling at other seasons would allow testing of the roles 
of the seasonal change in local environmental factors on the 
morphology of tadpoles.

Nonetheless, given the lack of genetic data on the target 
species, we stress that our proposed explanation is tentative, 
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yet potentially informative. Furthermore, after controlling 
for spatial correlation, we showed that tadpole morphology 
of S. squalirostris is affected by water-level and surround-
ing land use environmental factors in similar magnitude. 
Because future scenarios of land cover modification and cli-
mate change are predicted to result in ponds drying earlier 
and staying drying longer, our results can provide insights 
with respect to the potential effects of those drivers on other 
wetland-dwelling species with similar ecologies. Moreover, 
given the important roles that tadpoles play in the ecological 
processes in wetlands and the knowledge that these roles 
are mediated by their morphological traits, our findings are 
important to understand the impact of land use and water-
level environmental changes in the ecological functioning 
of such ecosystems.
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